如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()
A.M或R
B.N或P
C.M或N
D.P或R
∵MN=NP=PR=1,
∴|MN|=|NP|=|PR|=1,
∴|MR|=3;
①当原点在N或P点时,|a|+|b|<3,又因为|a|+|b|=3,所以,原点不可能在N或P点;
②当原点在M、R时且|Ma|=|bR|时,|a|+|b|=3;
综上所述,此原点应是在M或R点.
故选A.
该题暂无解析
数轴定义:规定了唯一的原点,正方向和单位长度的一条直线叫做数轴。数轴具有三要素:原点、正方向和单位长度,三者缺一不可。数轴是直线,可以向两方无限延伸,因此所有的有理数都可用数轴上的点来表示。
微信扫码关注公众号
获取更多考试热门资料