学分高考 考试资料 > 教案

相似三角形教案(集合7篇)

发布时间: 2024-06-29 17:08:53

相似三角形教案(1)

(第2课时)

一、教学目标

1.掌握相似三角形的性质定理2、3.

2.学生掌握综合运用相似三角形的判定定理和性质定理2、3来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理的应用.

2.教学难点 :是相似三角形的判定与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

叙述相似三角形的性质定理1.

[讲解新课]

让学生类比“全等三角形的周长相等”,得出性质定理2.

性质定理2:相似三角形周长的比等于相似比.

∽。

同样,让学生类比“全等三角形的面积相等”,得出命题.

“相似三角形面积的比等于相似比”教师对学生作出的这种判断暂时不作否定,待证明后再强调是“相似比的平方”,以加深学生的印象.

性质定理3:相似三角形面积的比,等于相似比的平方.

∽。

注:(1)在应用性质定理3时要注意由相似比求面积比要平方,这一点学生容易掌握,但反过来,由面积比求相似比要开方,学生往往掌握不好,教学时可增加一些这方面的练习.

(2)在掌握相似三角形性质时,一定要注意相似前提,如:两个三角形周长比是 ,它们的面积之经不一定是 ,因为没有明确指出这两个三角形是否相似,以此教育学生要认真审题.

例1  已知如图, ∽ ,它们的周长分别是60cm和72cm,且AB=15cm, ,求BC、AB、 、 .

此题学生一般不会感到有困难.

例2  有同一三角形地块的甲、乙两地图,比例尺分别为1:200和1:500,求甲地图与乙地图的`相似比和面积比.

教材上的解法是用语言叙述的,学生不易掌握,教师可提供另外一种解法.

解:设原地块为 ,地块在甲图上为 ,在乙图上为 .

∽ ∽   且 , .

学生在运用掌握了计算时,容易出现 的错误,为了纠正或防止这类错误,教师在课堂上可举例说明,如: ,而

[小结]

1.本节学习了相似三角形的性质定理2和定理3.

2.重点学习了两个性质定理的应用及注意的问题.

七、布置作业

教材P247中A组4、5、7.

八、板书设计

数学教案-相似三角形的性质 (第2课时)

相似三角形教案(2)

相似三角形的性质教学示例1

(第1课时)

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的`学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的其他性质(见图).

相似三角形教案(3)

教学建议

知识结构

重点、难点分析

相似三角形的性质及应用是本节的重点也是难点.

它是本章的主要内容之一,是在学完相似三角形判断的基础上,进一步研究相似三角形的性质,以完成对相似三角形的定义、判定和性质的全面研究.相似三角形的性质还是研究相似多边形性质的基础,是今后研究圆中线段关系的工具.

它的难度较大,是因为前面所学的知识主要用来证明两条线段相等,两个角相等,两条直线平行、垂直等.借助于图形的直观可以有助于找到全等三角形.但是到了相似形,主要是研究线段之间的比例关系,借助于图形进行观察比较困难,主要是借助于逻辑的体系进行分析、探求,难度较大.

教法建议

1.教师在知识的引入中可考虑从生活实例引入,例如照片的放大、模型的设计等等

2.教师在知识的引入中还可以考虑问题式引入,设计一个具体问题由学生参与解答

3.在知识的巩固中要注意与全等三角形的对比

(第1课时)

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点 :是相似三角形的判定1与性质等有关知识的`综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的其他性质(见图).

建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

∽。

教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

分析示意图:结论→∽(欠缺条件)→∽(已知)

∽。

BM=MC。

∽。

以上两种情况的证明可由学生完成.

[小结]

本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

七、布置作业

教材P241中3、教材P247中A组3.

八、板书设计

数学教案-相似三角形的性质

相似三角形教案(4)

(第2课时)

一、教学目标

1.使学生了解判定定理2、3的证明方法并会应用.

2.继续渗透和培养学生对类比数学思想的认识和理解.

3.通过了解定理的证明方法,培养和提高学生利用已学知识证明新命题的能力.

4.通过学习,了解由特殊到一般的唯物辩证法的观点.

二、教学设计

类比学习,探讨发现

三、重点及难点

1.教学重点:是判定定理2、3的应用.

2.教学难点 :是了解判定定理2的.证题方法与思路.

四、课时安排

1课时

五、教具学具准备

多媒体、常用画图工具、

六、教学步骤

[复习提问]

1.我们已经学习了几种判定三角形相似的方法?

2.叙述判定定理1,定理1的证题思路是什么?(①作相似,证全等,②作全等,证相似).

[讲解新课]

类比三角形全等判定的“SAS”让学生得出:

判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.

简单说成:两边对应成比例且夹角相等,两三角形相似.

已知:如图,在 和 中。

且 .

求证: ∽

建议“已知、求证”要学生自己写出.

另外,依照判定定理1的两个证明思路,让学生自己说出辅助线的作法.

下面判定定理3的引出与证明同判定定理2,这里从略.

在讲解判定定理3的过程中,再一次强调使用比例证明线段相等的方法,以便使学生能够熟练掌握它.

例3  依据下列各组条件,判定 与 是不是相似,并证明为什么:

(1) ,。

(2) ,。

解:让学生试着写出解题过程

这种类型的题具有两层意思:一是对正确的题目加以证明;二是对不正确的题目要说出理由或举反例,但后者对于初二学生来说比较困难.为降低难度,这里的题目全是正确的,只要求学生能用学过的知识给出证明就可以了,不必研究如何判定两个三角形不相似.

[小结]

1.让学生了解判定定理2、3的证明思路与方法.

2.会利用两个判定定理判定两个三角形是否相似.

七、布置作业

教材P238中A组5、P241中B组1.

八、板书设计

数学教案-三角形相似的判定 (第2课时)

相似三角形教案(5)

相似三角形的性质教学示例1

(第1课时)

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的其他性质(见图).

建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的`比和对应角平分的比都等于相似比

∽。

教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

分析示意图:结论→∽(欠缺条件)→∽(已知)

∽。

BM=MC。

∽。

以上两种情况的证明可由学生完成.

[小结]

本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

七、布置作业

教材P241中3、教材P247中A组3.

八、板书设计

相似三角形的性质教学示例1

(第1课时)

一、教学目标

1.使学生进一步理解相似比的概念,掌握相似三角形的性质定理1.

2.学生掌握综合运用相似三角形的判定定理和性质定理1来解决问题.

3.进一步培养学生类比的教学思想.

4.通过相似性质的学习,感受图形和语言的和谐美

二、教法引导

先学后教,达标导学

三、重点及难点

1.教学重点:是性质定理1的应用.

2.教学难点 :是相似三角形的判定1与性质等有关知识的综合运用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

[复习提问]

1.三角形中三种主要线段是什么?

2.到目前为止,我们学习了相似三角形的哪些性质?

3.什么叫相似比?

[讲解新课]

根据相似三角形的定义,我们已经学习了相似三角形的对应角相等,对应边成比例.

下面我们研究相似三角形的其他性质(见图).

建议让学生类比“全等三角形的对应高、对应中线、对应角平分线相等”来得出性质定理1.

性质定理1:相似三角形对应高的比,对应中线的比和对应角平分的比都等于相似比

∽。

教师启发学生自己写出“已知、求证”,然后教师分析证题思路,这里需要指出的是在寻找判定两三角形相似所欠缺的条件时,是根据相似三角形的性质得到的,这种综合运用相似三角形判定与性质的思维方法要向学生讲清楚,而证明过程可由学生自己完成.

分析示意图:结论→∽(欠缺条件)→∽(已知)

∽。

BM=MC。

∽。

以上两种情况的证明可由学生完成.

[小结]

本节主要学习了性质定理1的证明,重点掌握综合运用相似三角形的判定与性质的思维方法.

七、布置作业

教材P241中3、教材P247中A组3.

八、板书设计

相似三角形 —— 初中数学第三册教案

相似三角形教案(6)

相似三角形的应用教案设计 木厂口镇中 杨书云 一、 教材分析: 教学背景分析 教学内容 本节主要探索的是应用相似三角形的识别、性质等知识去解决某些简单的实际问题(计算不能直接测量物体的长度和高度)。学情分析 学生已经学过了相似三角形的概念、识别及性质,在次基础上通过本课的学习将对前面所学知识进行全面应用。初二学生在思维上已具备了初步的应用数学的意识。在心理特点上则更依赖于直观形象的认识。教 学 目 标 知识目标   1、学生通过探索实际问题来体验测量中对相似三角形有关知识的应用。2、经历应用相似三角形的有关知识去解决简单的实际问题的全过程。  能力目标 1、全力培养学生的应用意识,和把实际问题转化为数学问题并用数学方 法去分析、解决实际问题的能力。2、通过开放的设计题来发展学生的思维,培养创造力。情感目标 1、  通过如何测量旗杆的高度来激发学生学数学的兴趣,使全体学生积极参与探索,体验成功的喜悦。2、  力求培养学生科学,正确的数学观,体现探索精神。教学 重点 难点 教学重点 1、  引导学生根据题意构建出相似三角形模型,从而可以把实际问题转化为纯数学问题来解决。2、  面对已设计出来的测量方案,应注意在实际操作中所出现的错误。教学难点 通过审题、思考后,如何在实际问题中抽象出相似三角形的模型。教学策略 针对以上教学难点、重点的分析,本节课将应用启发式教学与探究式教学相结合来展开分解难点、突出重点。始终体现以学生自主学习及合作交流为主的新课程理念,从学生的经验、生活实际出发,创设情景,引导学生去发现、分析、解决问题。教学关键 在实际生活中,面对不能直接测量出长度和宽度的物体,我们可以应用相似三角形的知识来测量,只要将实际问题转化为数学问题,建立相似三角形模型,再利用线段成比例来求解。      二、 教学流程: 流程 内容呈现 师生活动 意图设计             一、 创 设 情 景   激 发 兴 趣           ⑴ 创设情景:   给我一个支点我可以撬起整个地球!                     ---阿基米德         师:(出示图片)著名的科学家阿基米德曾讲过如果给我一个支点我可以撬起整个地球。我们真佩服伟人的大气,其实这个杠杆图中有着一个数学知识,而且这个知识在生活中很常见。      生:观察图片,听教师讲述。        ⒈  通过图片的展示及教师的娓娓讲述一开始就把学生的视觉、听觉深深的吸引牢了。2、 杠杆原理图中就隐藏着相似三角形的模型,因此可以自然的引出有关的实际问题。3、  选择学生熟知的生活情景引入,激发兴趣,产生“要学习”的欲望。        二、 授 人 以   鱼,   给 出 模 型         ⑴  如图,铁道口的栏杆短臂长 1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高 m? ⑵ 小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动)                       师:给出两个小题,要求学生独立完成,完成后思考两题在解题过程中有何异同?   生:独立完成,并思考异同点。由学生来讲解过程,并分析异同点。师:两题都是通过构建相似三角形模型来解决的。  目的在于既可对相似三角形的识别与性质进行有效的.复习,又可让学生形成初步应用相似三角形知识来解决实际问题的意识。      流程 内容呈现 师生活动 意图设计     三、 抽 象 模   型,   感 受 过 程 感受建模过程:                     小结: 在解决此类实际问题时,可构建相似三角形的模型,再利用对应边成比例建立等式,已知三个量去求第四个量。          师:教师利用电脑课件演示抽模过程。  生:去直观感受过程,留下印象,形成经验。    要想很好的解决实际问题就必须转化为数学问题。具体的就是构建数学模型。本题我先借助电脑来抽象模型让学生感受过程,即授人于鱼。在培养学习兴趣,逐步展开思维的同时,使学生形成将生活问题数学化意识。                四、 授 人 于   渔,   动 手 实 践 之 一                                 1、同学们,若有一瓶牛奶,喝了一部分,如何来测量出剩余牛奶液面的高度呢?                   2、若小明在测量时,将木棒一不小心滑到了底面的D处,那又该如何测量呢? 3、如果木棒底端在瓶底上的任意处,是否都可测量呢? 4、在测量和计算时应注意什么?     师: 创设一个有趣的情景给学生,同时,给出实践的目标。这三个问题是呈现递进关系的。并能充分的应用到相似三角形的知识。  生: 以同桌合作的形式动手操作(课前已让学生准备好易拉罐、筷子、刻度尺),在操作中进行探索和思考。教师来回巡视,观察学生操作进程,然后由学生上讲台来讲解过程。  师:需测量那几个量?测量时应注意什么?   小结: 在构建好模型后,成比例的四个量中,必须想方设法测出三个量才能解的第四个量。    1、本题是一道操作性强,且是半开放题型,是在前面“授人于鱼”基础上,让学生合作探索以达到“授人于渔”的效果,三个问题层层递进,直至最后规律的得出:无论木棒底端放在那里,都可以通过建立相似三角形模型来测量。  2、充分培养了学生的动手实践能力及数学建模思想。      流程 内容呈现 师生活动 意图设计   五、 延 伸 拓   展,   动 手 实 践 之 二                    利用所给的工具如何测量零件的内径呢?       师:亮出题目,讲清任务。  生:四人一组进行动手操作,寻求解决问题的方法。  最后,由学生来讲解解决方法的过程。教师与其他同学再补充。  如果前面一题侧重的于对“A”字形相似三角形的应用,那么这一题更侧重于对“X”字形相似三角形的应用。两题相互补充。完善了学生的知识结构。                  六、   悟 其 渔   识,   设 计 方 案                     流程   小小发明家: 怎样测量旗杆的高度? 测量工具:直尺、卷尺、标杆、镜子             如果给你一根2米高木棒,一把皮尺,一面平面镜。同学们,你能利用所学知识选择适当的工具来测出旗杆吗?(自主设计方案)                                                         内容呈现       师:简单说明。  生:四人一组进行合作探索。    师:教师下讲台与学生一起交流,并汇总方案。      由学生来讲解设计的步骤,并讲清需要测量那些量及在测量时应注意什么?                     师生活动 1、本题是一道完全开放的题目,可以让他们的思想插上翅膀,能培养学生的创新意识与探索精神。2、单凭自己的力量是不够的,遇到困难自然想到要合作,这样可以培养学生的合作交流意识。  3、这是本课的最高境界——悟其渔识。全面引导学生进行开创性的思考和探索         预测说明                 七、 预 测 学 生 可 能 会 设 计 的 方 案                                         方案一             方案二             方案三                         方案四                                                                 1、学生可能首先想到方案一 当方案一应注意的是木棒影子的顶端应该在旗杆影子的外面。          2、测量时,应让木棒顶端影子与旗杆顶端的影子相互重合于一点。        3、测量身高时 应该测量人的目高。&nb

相似三角形教案(7)

一、本章的两套定理

第一套(比例的有关性质):

涉及概念:

①第四比例项

②比例中项

③比的前项、后项,比的内项、外项

④黄金分割等。

第二套:

注意:

①定理中对应二字的含义;

②平行相似(比例线段)平行。

二、相似三角形性质

1.对应线段

2.对应周长

3.对应面积。

三、相关作图

①作第四比例项;

②作比例中项。

四、证(解)题规律、辅助线

1.等积变比例,比例找相似。

2.找相似找不到,找中间比。方法:将等式左右两边的比表示出来

3.添加辅助平行线是获得成比例线段和相似三角形的.重要途径。

4.对比例问题,常用处理方法是将一份看着k;对于等比问题,常用处理办法是设公比为k。

5.对于复杂的几何图形,采用将部分需要的图形(或基本图形)抽出来的办法处理。

五、 应用举例(略)

温馨提示:
本文【相似三角形教案(集合7篇)】由作者学习这件小事提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号