学分高考 考试资料 > 教案

函数的性质教案(必备8篇)

发布时间: 2024-06-29 13:50:26

函数的性质教案(1)

一次函数的图象和性质

一、目的要求

1.使学生能画出正比例函数与一次函数的图象。

2.结合图象,使学生理解正比例函数与一次函数的性质。

3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

二、内容分析

1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

三、教学过程

复习提问:

1.什么是一次函数?什么是正比例函数?

2.在同一直角坐标系中描点画出以下三个函数的图象:

y=2x   y=2x-1   y=2x+1

新课讲解:

1.我们画过函数y=x的图象,并且知道,函数y=x的'图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

一般地,一次函数的图象是一条直线。

前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

先看两个正比例项数。

y=0.5x

与 y=-0.5x

由这两个正比例函数的解析式不难看出,当x=0时。

y=0

即函数图象经过原点.(让学生想一想,为什么?)

除了点(0,0)之外,对于函数y=0.5x,再选一点(1,0.5),对于函数y=-0.5x。再选一点(1,一0.5),就可以分别画出这两个正比例函数的图象了。

实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

(1)先选取两点,通常选点(0,0)与点(1,k);

(2)在坐标平面内描出点(0, O)与点(1,k);

(3)过点(0,0)与点(1,k)做一条直线.

这条直线就是正比例函数y=kx(k≠0)的图象.

观察正比例函数  y=0.5x 的图象.

这里,k=0.5>0.

从图象上看, y随x的增大而增大.

再观察正比例函数 y=-0.5x  的图象。

这里,k=一0.5<0

从图象上看, y随x的增大而减小

实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质.

先看

y=0.5x

任取两对对应值. (x1,y1)与(x2,y2)。

如果x1>x2,由k=0.5>0,得

0.5x1>0.5x2

即   yl>y2

这就是说,当x增大时,y也增大。

类似地,可以说明的y=-0.5x  性质。

从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

一般地,正比例函数y=kx(k≠0)有下列性质:

(1)当k>0时,y随x的增大而增大;

(2)当k<0时,y随x的增大而减小。

2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

y=kx+b(k,b是常数,k≠0)

通常选取

(O,b)与(-

函数的性质教案(2)

《指数函数及其性质》教案 增城中学  邓城 一、教材分析 1.教材背景 指数函数是在学习了函数的现代定义及其图象、性质,掌握了研究函数的一般思路,并将幂指数从整数扩充到实数范围之后,学习的第一个重要的基本初等函数,是《基本初等函数》一章的重要内容。本节内容分两课时完成,第一课时学习指数函数的概念、图象、性质;第二课时为指数函数性质的应用,本课为第一课时。2.本课的地位和作用 本节内容既是函数内容的深化,又是今后学习对数函数的基础,具有非常高的实用价值,在教材中起到了承上启下的关键作用。在指数函数的研究过程中蕴含了数形结合、分类讨论、归纳推理、演绎推理等数学思想方法,通过学习可以帮助学生进一步理解函数,培养学生的函数应用意识,增强学生对数学的兴趣。二、重难点分析 根据新课程标准及对教材的分析,确定本节课重难点如下: 重点:本节课是围绕指数函数的概念和图象,并依据图象特征归纳其性质展开的。因此本节课的教学重点是掌握指数函数的图象和性质。难点: 1、对于 和 时函数图象的不同特征,学生不容易归纳认识清楚。因此,弄清楚底数a对函数图象的影响是本节的难点之一。2、底数相同的两个函数图象间的关系。三、目标分析 1.知识技能目标 掌握指数函数的概念、图象和性质。2.过程性目标 通过自主探索,让学生经历“特殊→一般→特殊”的`认知过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法。3.情感、价值观目标 让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美,展现数学实用价值及其在社会进步、人类文明发展中的重要作用。四、学情分析 1.有利因素 学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。2.不利因素 本节内容思维量较大,对思维的严谨性和分类讨论、归纳推理等能力有较高要求,学生学习起来有一定难度。五、教法学法 根据对教材、重难点、目标及学生情况的分析,本着教法为学法服务的宗旨,确定以下教法、学法: 探究发现式教学法、类比学习法,并利用多媒体辅助教学。遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。依据本节为概念学习的特点,类比学习函数的一般思路,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。六、教学过程 〈一〉.新课引入  观看视频解答下面两个问题: 问题1:某种细胞分裂时,由一个分裂成2个,2个分裂成4个……,这样的细胞分裂x次后,细胞个数y与x的函数关系式为:  问题2:庄子曰:一尺之棰,日取其半,万世不竭。木棒长度y与经历天数x的关系式是   提问:y=2x与y=3x这类函数的解析式有何共同特征? 答:函数解析式都是指数形式,底数为定值且自变量在指数位置。(若用a代换两个式子中的底数,并将自变量的取值范围扩展到实数集则得到……) 定义:一般地 ,函数 = ( 且 ) 叫做指数函数 ,其中 是自变量 ,定义域为 R. 进一步提问:为什么规定定义中 ? 将 如数轴所示分为: ,, ,和 五部分进行讨论:     (1)如果 ,比如 ,这时对于 等,在实数范围内函数值不存在; (2)如果 , (3)如果 , ,是个常值函数,没有研究的必要; 【设计目的】对 的范围的具体分析,有利于学生对指数函数一般形式的掌握,同时为后面研究函数的图象和性质埋下了伏笔。能否判断下列函数哪些是指数函数吗? (1)   (2) (3) (4) 【设计目的】打破学生对定义的轻视并使学生头脑中不断完善对定义理解 〈二〉指数函数图象 指数函数的图象是怎样的呢?先看特殊例子(将同学们分两组用描点法分别画出下列函数的图象) 第一组:画出 的图象;第二组:画出 的图象。(及时指导学生作图,然后用几何画板播放已经做好的函数图象,让学生比较与自己所画出来的有哪些异同点。) 提问:此两组图象有何共同特征?当底数 和 时图象有何区别? 〈三〉指数函数性质 根据指数函数的图象特征,由特殊到一般的推理方法提炼指数函数的性质,完成下表:   a>1 0

函数的性质教案(3)

一、教材分析

1、教材的地位与作用

《正弦函数、余弦函数的图象与性质》是高中《数学》第一册(下)第四章第八节的内容,其主要内容是正弦函数、余弦函数的图象与性质。过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数、余弦函数的图象与性质,为今后正切函数的图象与性质、函数的图象的研究打好基础。因此,本节的学习有着极其重要的地位。

2、教学重点和难点

教学重点:正弦函数、余弦函数的图象的形状及“五点作图法”。

教学难点:(1)利用单位圆画正弦函数图象;

(2)利用正弦函数图象和诱导公式画出余弦函数图象。

二、目标分析

根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目标如下。

1、知识目标

(1)利用正弦线画出正弦函数的图象。

(2)利用正弦函数的图象和诱导公式画出余弦函数的图象。

(3)用“五点作图法”画正弦函数、余弦函数的简图。

2、能力目标(1)会用单位圆中的正弦线画出正弦函数图象;

(2)掌握正弦函数图象的“五点作图法”;

(3)培养观察能力、分析能力、归纳能力、表达能力;

(4)培养数形结合和化归转化的数学思想方法。

3、德育目标

(1)渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点;

(2)培养学生勇于探索、勤于思考的精神;

(3)使学生懂得数学是源于生活,服务于生活的数学特点。

4.美育目标

通过作图,使学生感受波形曲线的流畅美、对称美,使学生体会事物周期变化的奥秘,激发学生学习数学的兴趣。

三、教法、学法分析

1.教学方法

教学形式是为教学内容服务的,不同的教学形式会产生不同的效果。以“开放、多样、互动”为主旨的教学形式必然使教学过程丰富多彩。以学生为中心,在整个教学过程中由教师起组织者,指导者、帮助者和促进者的作用,利用情景,协作发挥学生的主动性、创造性,最终达到使学生有效的对所学知识,自主建构。本节采用建构主义学习环境下的启发式教学模式。

2.学习方法

建构主义认为,学习并非学生对于教师所授予知识的被动接受,而是以其自身己有的知识和经验为基础的主动建构。教学过程的实质是学生主动探索、主动建构的过程。本节课引导学生采用以下两种学习方式:

(1).交流合作的学习方式:

学生与学生、学生与教师之间交流,讨论,合作实践学习任务。

(2).抽象归纳的学习方式:

学生由具体的演示过程,分析归纳,并从中抽象出数学方法和结论。

3.教学手段:

课堂教学中,积极运用现代化教学手段,充分地发挥多媒体的形象性,直观性,同时也充分利用传统教学手段,在教学中体现教学手段的多样式,为学生的发展提供科学地、有效地保障。图文并茂的表现形式使学生更易吸收、消化。本节课利用多媒体演示“正弦函数的几何作图法”以及图象变换。

四、教学程序

教 学 过 程

设 计 意 图

(一)创设情景。

1。实物演示:

“装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上的轨迹”

思考:

问题一:1、该曲线是何曲线?

2、你有办法画出该曲线的图象吗?

2。复习

弧度制、函数相关知识、正弦线、作图法、图象的平移。

(二)探究新知。

1、课件演示:“正弦函数图象的几何作图法”

2、

教师引导:在直角坐标系的x轴上任意取一点O1,以O1为圆心作单位圆,从圆O1与x轴的交点A起把圆O1分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确),过圆O1上的各分点作x轴的垂线,可以得到对应于0、、、、……、等角的正弦线,相应地,再把x轴上从0到这一段(≈6。28)分成12等份,把角x的正弦线向右平移,使它的起点与x轴上的点x重合,再用光滑的曲线把这些正弦线的'终点连结起来,就得到了函数,的图象。

因为终边相同的角有相同的三角函数值,所以函数

在的图象与函数,的图象的形状完全一样,只是位置不同,于是只要将它向左、右平行移动(每

次个单位长度),就可以得到正弦函数,的图象,即正弦曲线。

问题二:1、函数,的图象中起着关键作用的点是哪些点?

2、几何作图法虽然比较精确,但是不太实用,如何快捷地画出正弦函数的图象呢?

五个关键点:

事实上,描出这五个点,函数,的图象的形状就基本确定了。今后在精确度要求不太高时,常常先找出这五个关键点,用光滑曲线将它们连结起来即可得到函数的简图,我们把这种方法称为“五点作图法”。

课件演示:“正弦函数图象的五点作图法”

用变换法作余弦函数y=cosx

是同一个函数;余弦函数的图象可由正弦曲线向左平移个单位

图中的五个关键点:

与画函数,的简图类似,通过这五个点,可以画出函数,的简图。

例1:用“五点作图法”画出函数

的简图。

课堂练习:

(1) y = — cosx ,x∈[0,2π]

(2) y = sinx—1,x∈[0,2π]

7、课堂小结

(1)正弦函数图象的几何作图法;

(2)正弦函数、余弦函数图象的五点作图   法;使学生通过作业进一步掌握和巩固本节内容。

(3)正弦函数与余弦函数图象间的联系。

8、布置作业:

1、习题4。8第1题、第8题

五、板书设计

一 、正弦函数的图象

1、代数描点法

2、几何描点法(多媒体课件展示)

3、函数y=sinx, xR的图象

二、 余弦函数的图象

函数y=cosx,xR的图象

三、 五点作图法

四、例1。y = sinx+1,x∈[0,2π]

五、 课堂练习(1) y = — cosx x∈[0,2π]

(2) y = sinx—1 x∈[0,2π]

六、 小结

七、作业习题4。8第1题、第8题

六、评价分析

本课教学设计力求体现以教师为主导、以学生为主体的原则,体现“数学教学主要是数学活动的教学”这一教学思想。又要体现知识的发现过程,培养学生的创新意识和探索实践能力,突出以下几点:

1。注重目标控制,面向全体学生,启发式教学。

2。学生参与知识的形成过程,使学生听有所思,思有所获,增强学生学习数学的信心和兴趣。

3。注重师生双边交流,学生间协作交流。

让学生观察,了解日常生活中的实际问题,使学生领悟到“数学源于生活,服务于生活的特点” 从而培养学生的兴趣,激发学习的热情。

为后面的学习作为铺垫。

通过课件演示突破利用单位圆画正弦函数图象这一难点。培养学生观察能力、分析能力。

注意渗透由抽象到具体的思想,促进学生数学思想方法的形成,引导学生确实掌握“数形结合”的思想方法。

让学生交流、讨论、合作,由具体的演示过程分析归纳,从中抽象出数学结论。

通过问题引导学生思考、分析,培养学生数形结合的数学思想方法。

图象中起关键作用的五点,学生可能说不全,应进行耐心引导。

重在培养学生掌握研究问题的方法,让学生在学习中自主建构。

让学生感觉正弦函数的图象的形状。帮助学生理解五个关键点。并且提高学生的审美情趣和对数学浓厚的兴趣。

“五点作图法”的一般步骤:列表、描点、连线。应注意在图中标出关键点的横、纵坐标。

对学生提问,由学生讨论总结,培养学生的归纳能力、表达能力。

然后教师重新演示课件,进行总结和补充。

通过对比、分析、引导学生学会化归转化的数学思想方法。

通过例题的方式巩固学生的学习,将知识转化为能力。

让两个学生板演,重在检验学生理解知识、

运用知识的能力情况。

培养学生合作学习和数学交流的能力。渗透由具体到抽象的思想。

作业布置注意分层,满足不同层次学生的需要。

函数的性质教案(4)

一、学习要求

①了解映射的概念,理解函数的概念;

②了解函数的单调性和奇偶性的概念,掌握判断一些简单函数单调性奇偶性的方法;

③了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数;

④理解分数指数幂的`概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质;

⑤理解对数函数的概念、图象和性质;⑥能够应用函数的性质、指数函数和对数函数性质解决某些简单实际问题.

二、两点解读

重点:①求函数定义域;②求函数的值域或最值;③求函数表达式或函数值;④二次函数与二次方程、二次不等式相结合的有关问题;⑤指数函数与对数函数;⑥求反函数;⑦利用原函数和反函数的定义域值域互换关系解题.

难点:①抽象函数性质的研究;②二次方程根的分布.

三、课前训练

1.函数 的定义域是 ( D )

(A) (B) (C) (D)

2.函数 的反函数为 ( B )

(A) (B)

(C) (D)

3.设 则 .

4.设 ,函数 是增函数,则不等式 的解集为 (2,3)

四、典型例题

例1设 ,则 的定义域为 ( )

(A) (B)

(C) (D)

解:∵在 中,由 ,得 , ∴。

∴在 中, .

故选B

例2已知 是 上的减函数,那么a的取值范围是 ( )

(A) (B) (C) (D)

解:∵ 是 上的减函数,当 时, ,∴ ;又当 时, ,∴ ,∴ ,且 ,解得: .∴综上, ,故选C

例3函数 对于任意实数 满足条件 ,若 ,则

解:∵函数 对于任意实数 满足条件。

∴ ,即 的周期为4。

例4设 的反函数为 ,若 ×

则 2

解:

∴m+n=3,f(m+n)=log3(3+6)=log39=2

(另解∵ ,

例5已知 是关于 的方程 的两个实根,则实数 为何值时, 大于3且 小于3?

解:令 ,则方程

的两个实根可以看成是抛物线 与 轴的两个交点(如图所示)。

故有: ,所以:。

解之得:

例6已知函数 有如下性质:如果常数 ,那么该函数在 上是减函数,在 上是增函数.如果函数 的值域为 ,求b的值;

解:函数 的最小值是 ,则 =6,∴。

函数的性质教案(5)

反比例函数的图象与性质教案教学设计

反比例函数的图象与性质

教学目标

知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。

2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。

3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。

过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.

情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。

教学重点

教学难点 1) 重点:画反比例函数图象并认识图象的特点.

2)难点:画反比例函数图象.

教学关键 教师画图中要规范,为学生树立一个可以学习的模板

教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式

教学手段 教师画图,学生模仿

教具 三角板,小黑板

学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法

教学过程

(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)

内 容 设计意图

一:课前检测:

1.什么叫做反比例函数;

(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)

2.反比例函数的定义中需要注意什么?

(1)k为常数,k0

(2)从y= 中可知x作为分母,所以x不能为零.

二:激发兴趣 导入新课

问题1:对于一次函数 y = kx + b ( k 0 )的图象与性质,我们是如何研究的?

y=kx+b y=kx

K0 一、二、三 一、三

b0 一、三、四

K0 一、二、四 二、四

b0 二、三、四

问题2:对于反比例函数 y=k/x ( k是常数,k 0 ),我们能否象一次函数那样进行研究呢?

可以

问题3:画图象的步骤有哪些呢?

(1)列表

(2)描点

(3)连线

(教学片断:

师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。

生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。

生:我知道反比例函数的解析式为 且k不等于0

生:我知道反比例函数的图象是曲线。

师:同学们说的都很好,关于反比例函数,相信大家还会知道一些,今天我们先讨论到这里.现在大家思考一个问题,我们在研究一次函数时研究完解析式后,研究的是函数图象,那么对于反比例函数我们接下来该研究什么呢?

生:该研究反比例函数图象和性质了。

师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?

三:探求新知

学生思考、交流、回答。

提问:你能画出 的图象吗?

学生动手画图,相互观摩。

(1) 列表(取值的特殊与有效性)

x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

(2)描点(描点的准确)

(3)连线(注意光滑曲线)

议一议

(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。

(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?

(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?

(4)曲线的发展趋势如何?

曲线无限接近坐标轴但不与坐标轴相交

学生先分四人小组进行讨论,而后小组汇报

做一做

作反比例函数 的图象。

学生动手画图,相互观摩。

想一想

观察 和 的图象,它们有什么相同点和不同点?

学生小组讨论,弄清上述两个图象的异同点

相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)

不同点:第一个图象位于一、三象限;第二个图象位于二、四象限

四:归纳与概括

反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。

(1) 当 k0 时,两支曲线分别位于第___、___象限。

(2) 当 k0 时,两支曲线分别位于第___、___象限.

五:课堂练习

(1)

(2)反比例函数 的图象是________,过点( ,____),其图象分布在_ __象限;

六:形成性检测

(1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________

(2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )

(A) (B) (C) (D)

(3)画 和 的图象

七:反馈拓展

在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.

八:作业布置

(1) 作反比例函数y=2/x,y=4/x,y=6/x的图象

(2) 习题5.2.1

(3)预习下一节 反比例函数的图象与性质II

复习上节主要内容

(3分钟)

(5分钟)

运用类比研究一次函数性质的方法,来研究反比例函数图象与性质

由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。

数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。

数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。

(12分钟)

引导学生正确画出反比例函数图象,并能归纳反比例函数图象的.有关性质.

在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。

注:(1)x取绝对值相等符号相反的数值

(2) x取值要尽可能多,而且有代表性

(3)连线时用光滑曲线从小到大依次连接

(4)图象不与坐标轴相交

在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。

(3分钟)

此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。

(5分钟)

活动效果及注意事项 学生初次作非线性函数的图象,在作图过程中应给学生留有思考和交流的时间;连线必须是光滑的曲线

(4分钟)

培养学生归纳,语言表达能力

此中注意分类讨论思想的应用

巩固反比例函数图象性质

(2分钟)

与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。

(5分钟)

这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。

(4分钟)

此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。

(1分钟)

巩固作反比例函数图象的步骤,预习下一节课内容

教学反思与检讨:

本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。

由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。

在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。

反比例函数的图象与性质

一:画出 的图象

(1)列表(取值的特殊与有效性)

x -8 -4 -2 -1 -1/2 1/2 1 2 4 8

(2)描点(描点的准确)

(3)连线(注意光滑曲线)

注:(1)x取绝对值相等符号相反的数值

(2)x取值要尽可能多,而且有代表性 三:练习

(3)连线时用光滑曲线从小到大依次连接

(4)图象不与坐标轴相交

二:反比例函数的图象y = 是由两支曲线组成的。

(1) 当 k0 时,两支曲线分别位于第一、三象限。

(2) 当 k0 时,两支曲线分别位于第二、四象限.

函数的性质教案(6)

初中数学第五册《指数函数与对数函数的性质及其应用》教案

课题:指数函数与对数函数的性质及其应用

课型:综合课

教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

重点:指数函数与对数函数的特性。

难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

教学方法:多媒体授课。

学法指导:借助列表与图像法。

教具:多媒体教学设备。

教学过程:

一、 复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

二、 展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

指数函数与对数函数关系一览表

函数

性质

指数函数

y=ax (a>0且a≠1)

对数函数

y=logax(a>0且a≠1)

定义域

实数集R

正实数集(0,﹢∞)

值域

正实数集(0,﹢∞)

实数集R

共同的点

(0,1)

(1,0)

单调性

a>1 增函数

a>1 增函数

0<a<1 减函数

0<a<1 减函数

函数特性

a>1

当x>0,y>1

当x>1,y>0

当x<0,0<y<1

当0<x<1,y<0

0<a<1

当x>0,0<y<1

当x>1,y<0

当x<0,y>1

当0<x<1,y>0

反函数

y=logax(a>0且a≠1)

y=ax (a>0且a≠1)

图像

Y

y=(1/2)x y=2x

(0,1)

X

Y

y=log2x

(1,0)

X

y=log1/2x

三、 同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的'定义域相同。

Y

y=(1/2)x y=2x y=x

(0,1) y=log2x

(1,0) X

y=log1/2x

注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

四、 利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

五、 例题

例⒈比较(Л)(-0.1)与(Л)(-0.5)的大小。

解:∵ y=ax中, a=Л>1

∴ 此函数为增函数

又∵ ﹣0.1>﹣0.5

∴ (Л)(-0.1)>(Л)(-0.5)

例⒉比较log67与log76的大小。

解: ∵ log67>log66=1

log76<log77=1

∴ log67>log76

注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

例⒊ 求y=3√4-x2的定义域和值域。

解:∵√4-x2 有意义,须使4-x2≥0

即x2≤4, |x|≤2

∴-2≤x≤2,即定义域为[-2,2]

又∵0≤x2≤4, ∴0≤4-x2≤4

∴0≤√4-x2 ≤2,且y=3x是增函数

∴30≤y≤32,即值域为[1,9]

例⒋ 求函数y=√log0.25(log0.25x)的定义域。

解:要函数有意义,须使log0.25(log0.25x)≥0

又∵ 0<0.25<1,∴y=log0.25x是减函数

∴ 0<log0.25x≤1

∴ log0.251<log0.25x≤log0.250.25

∴ 0.25≤x<1,即定义域为[0.25,1)

六、 课堂练习

求下列函数的定义域

1. y=8[1/(2x-1)]

2. y=loga(1-x)2 (a>0,且a≠1)

七、 评讲练习

八、 布置作业

第113页,第10、11题。并预习指数函数与对数函数

在物理、社会科学中的实际应用。

函数的性质教案(7)

一次函数的图象和性质教案设计

一、目的要求

1.使学生能画出正比例函数与一次函数的图象,一次函数的图象和性质 —— 初中数学第三册教案。

2.结合图象,使学生理解正比例函数与一次函数的性质。

3.在学习一次函数的图象和性质的基础上,使学生进一步理解正比例函数和一次函数的概念。

二、内容分析

1、对函数的研究,在初中阶段,只能是初步的。从方法上,是用初等方法,即传统的初等数学的方法,而不是用极限、导数等高等数学的基本工具,并且,比起高中对函数的研究,更多地依赖于图象的直观,从研究的内容上,通常,包括定义域、值域、函数的变化特征等方面。关于定义域,只是在开始学习函数概念时,有一个一般的简介,在具体学习几种数时,就不一一单独讲述了,关于值域,初中暂不涉及,至于函数的变化特征,像上升、下降、极大、极小,以及奇、偶性、周期性,连续性等,初中只就一次函数与反比例函效的升降问题略作介绍,其它,在初中都不做为基本教学要求。

2、关于一次函数图象是直线的问题,在前面学习13.3节时,利用几何学过的角平分线的性质,对函数y=x的图象是一条直线做了一些说明,至于其它种类的一次函数,则只是在描点画图时,从直观上看出,它们的图象也都是一条直线,教科书没有对这个结论进行严格的论证,对于学生,只要求他们能结合y=x的图象以及其它一些一次函数图象的实例,对这个结论有一个直观的认识就可以了。

三、教学过程

复习提问:

1.什么是一次函数?什么是正比例函数?

2.在同一直角坐标系中描点画出以下三个函数的图象:

y=2x y=2x—1 y=2x+1

新课讲解:

1.我们画过函数y=x的图象,并且知道,函数y=x的图象上的点的坐标满足横坐标与纵坐标相等的条件,由几何上学过的角平分线的性质,可以判断,函数y=x,这是一个一次函数(也是正比例函数),它的图象是一条直线。

再看复习提问的第2题,所画出的三个一次函数的图象,从直观上看,也分别是一条直线。

一般地,一次函数的图象是一条直线。

前面我们在画一次函数的图象时,采用先列表、描点,再连续的方法.现在,我们明确了一次函数的图象都是一条直线。因此,在画一次函数的图象时,只要在坐标平面内描出两个点,就可以画出它的图象了。

先看两个正比例项数。

y=0。5x

与 y=—0。5x

由这两个正比例函数的解析式不难看出,当x=0时。

y=0

即函数图象经过原点.(让学生想一想,为什么?)

除了点(0,0)之外,对于函数y=0。5x,再选一点(1,0。5),对于函数y=—0。5x。再选一点(1,一0。5),就可以分别画出这两个正比例函数的图象了。

实际画正比例函数y=kx(k≠0)的图象,一般按以以下三步:

(1)先选取两点,通常选点(0,0)与点(1,k);

(2)在坐标平面内描出点(0, O)与点(1,k);

(3)过点(0,0)与点(1,k)做一条直线.

这条直线就是正比例函数y=kx(k≠0)的图象.

观察正比例函数 y=0。5x 的'图象.

这里,k=0.5>0.

从图象上看, y随x的增大而增大.

再观察正比例函数y=—0.5x 的图象。

这里,k=一0.5<0

从图象上看, y随x的增大而减小

实际上,我们还可以从解析式本身的特点出发,考虑正比例函数的性质。

先看

y=0。5x

任取两对对应值。(x1,y1)与(x2,y2)。

如果x1>x2,由k=0。5>0,得

0。5x1>0。5x2

即yl>y2

这就是说,当x增大时,y也增大。

类似地,可以说明的y=—0.5x 性质。

从解析式本身特点出发分析正比例函数性质,可视学生程度考虑是否向学生介绍。

一般地,正比例函数y=kx(k≠0)有下列性质:

(1)当k>0时,y随x的增大而增大;

(2)当k<0时,y随x的增大而减小。

2、讲解教科书13.5节例1.与画正比例函数图象类似,画一次函数图象的关键是选取适当的两点,然后连线即可,为了描点方便,对于一次函数

y=kx+b(k,b是常数,k≠0)

通常选取

(O,b)与(— ,0)

两点。

对于例 l中的一次函效

y=2x+1与y=—2x+1

就分别选取

(O,1)与(一0.5,2)。

还有

(0,1)—与(0.5.0).

在例1之后,顺便指出,一次函数y=kx+b的图象,习惯上也称为直线) y=kx+b

结合例1中的两个一次函数的图象,就可以得到与正比例函数类似的关于一次函数的两条性质,初中数学教案《一次函数的图象和性质 —— 初中数学第三册教案》。

对于一次函数的性质,也可以从一次函数的解析式分析得出,这与正比例函数差不多。

课堂练习:

教科书13.5节第一个练习第l—2题,在做这两道练习时,可结合实例进一步说明正比例函数与一次函数的有关性质。

课堂小结:

1.正比例函数y=kx图象的画法:过原点与点(1,k)的直线即所求图象.

2。一次函数y=kx+b图象的画法:在y轴上取点(0,6),在x轴上取点( ,0),过这两点的直线即所求图象。

3.正比例函数y=kx与一次函数y=kx+b的性质(由学生自行归纳).

四、课外作业

1.教科书习题13.5A组第l一3题.

2.选作教科书习题13.5B组第1题.

函数的性质教案(8)

初三数学二次函数的图象和性质教案

作为一名老师,通常需要准备好一份教案,教案是备课向课堂教学转化的关节点。如何把教案做到重点突出呢?下面是小编为大家收集的初三数学二次函数的图象和性质教案,仅供参考,希望能够帮助到大家。

教学目标:

1.经历探索二次函数y=ax2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

2.能够利用描点法作出函数y=ax2的图象,并能根据图象认识和理解二次函数y=ax2的性质,初步建立二次函数表达式与图象之间的联系。

3.能根据二次函数y=ax2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

教学重点:二次函数y=ax2的图象的作法和性质

教学难点:建立二次函数表达式与图象之间的联系

教学方法:自主探索,数形结合

教学建议:

利用具体的二次函数图象讨论二次函数y=ax2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

教学过程:

一、认知准备:

1.正比例函数、一次函数、反比例函数的图象分别是什么?

2.画函数图象的方法和步骤是什么?(学生口答)

你会作二次函数y=ax2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

二、新授:

(一)动手实践:作二次函数y=x2和y=-x2的图象

(同桌二人,南边作二次函数y=x2的图象,北边作二次函数y=-x2的图象,两名学生黑板完成)

(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)

1.你能描述该图象的形状吗?

2.该图象与x轴有公共点吗?如果有公共点坐标是什么?

3.当x<0时,随着x的增大,y如何变化?当x>0时呢?

4.当x取什么值时,y值最小?最小值是什么?你是如何知道的?

5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

(三)学生交流:

1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)

2.二次函数y=x2和y=-x2的图象有哪些相同点和不同点?

3.教师出示同一直角坐标系中的两个函数y=x2和y=-x2图象,根据图象回答:

(1)二次函数y=x2和y=-x2的图象关于哪条直线对称?

(2)两个图象关于哪个点对称?

(3)由y=x2的图象如何得到y=-x2的图象?

(四)动手做一做:

1.作出函数y=2 x2和y= -2 x2的图象

(同桌二人,南边作二次函数y= -2 x2的图象,北边作二次函数y=2 x2的图象,两名学生黑板完成)

2.对照黑板图象,数形结合,研讨性质:

(1)你能说出二次函数y=2 x2具有哪些性质吗?

(2)你能说出二次函数y= -2 x2具有哪些性质吗?

(3)你能发现二次函数y=a x2的图象有什么性质吗?

(学生分小组活动,交流各自的发现)

3.师生归纳总结二次函数y=a x2的图象及性质:

(1)二次函数y=a x2的图象是一条抛物线

(2)性质

a:开口方向:a>0,抛物线开口向上,a〈 0,抛物线开口向下[

b:顶点坐标是(0,0)

c:对称轴是y轴

d:最值:a>0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

e:增减性:a>0时,在对称轴的左侧(X<0),y随x的`增大而减小,在对称轴的右侧(x>0),y随x的增大而增大,a〈0时,在对称轴的左侧(X<0),y随x的增大而增大,在对称轴的右侧(x>0),y随x的增大而减小。

4.应用:(1)说出二次函数y=1/3 x2和y= -5 x2有哪些性质

(2)说出二次函数y=4 x2和y= -1/4 x2有哪些相同点和不同点?

三、小结:

通过本节课学习,你有哪些收获?(学生小结)

1.会画二次函数y=a x2的图象,知道它的图象是一条抛物线

2.知道二次函数y=a x2的性质:

a:开口方向:a>0,抛物线开口向上,a〈0,抛物线开口向下

b:顶点坐标是(0,0)

c:对称轴是y轴

d:最值:a>0,当x=0时,y的最小值=0,a〈0,当x=0时,y的最大值=0

e:增减性:a>0时,在对称轴的左侧(X<0=,y随x的增大而减小,在对称轴的右侧(x>0),y随x的增大而增大,a〈0时,在对称轴的左侧(X<0),y随x的增大而增大,在对称轴的右侧(x>0),y随x的增大而减小。

温馨提示:
本文【函数的性质教案(必备8篇)】由作者学习工坊提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号