相反数定义是只有符号不同的两个数互为相反数。相反数的性质是他们的绝对值相同。例如:-2与+2互为相反数。用字母表示a与-a是相反数,0的相反数是0。这里a便是任意一个数,可以是正数、负数,也可以是0。相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
正数的相反数是负数,负数的相反数就是正数。0的相反数是0,也就是0的相反数是它本身。同时,相反数是它本身的数只有0。无理数也有相反数。互为相反数的两个数的商为-1(0除外)。
实数a相反数的相反数,就是a本身。a-b和b-a互为相反数。负数和0的绝对值是它的相反数。虚数没有相反数。相反数不具有传递性,即如果x是y的相反数,y是z的相反数,那么x不一定是z的相反数(除非x=y=z=0)。
求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。
相反数是一个数学术语,指绝对值相等,正负号相反的两个数互为相反数。
相反数的性质是他们的绝对值相同。例如:-2与+2互为相反数。用字母表示a与-a是相反数,0的相反数是0。这里a便是任意一个数,可以是正数、负数,也可以是0。
代数意义
和是0的两个数互为相反数,0的相反数还是0。
1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a可以等于任何实数)
2、若两个实数a和b满足b=﹣a。就说b是a的相反数。
3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数
4、一个实数x的相反数y,实际上是R到R的一个映射:y=f(x)=-x。
从二维空间看,这个映射可以看作是旋转(180度)映射(圆心对称);
这个映射也可以看作是翻折(180度)映射(轴对称);
x=0,就是这个映射下的不动点。
相反数的定义是只有符号不同的两个数互为相反数。如:-2与+2互为相反数。用字母表示则是a与-a是相反数。
相反数的特点1.互为相反数的两个数相加为零;
2.相反数与倒数一样不能单独存在;
3.只有符号不同的两个数互为相反数。
相反数的性质只有符号不同的两个数,就称其中一个数是另一个数的相反数。相反数的性质如下:
1.0的相反数是0;
2.任意的一个有理数a,它的相反数是-a;
3.a本身既可以是正数,也可以是负数,还可以是零;
4.互为相反数的两个数在数轴上表示出来后,表示这两个数的点,分别在原点的两旁,与原点的距离相等,并且互为相反数的两个数的和为0。
只有符号不同的两个数,叫做互为相反数.如,+3与-3互为相反数,+4与-4互为相反数.
注意:
(1)互为相反数是成对出现的,不能单独存在,例如+3的相反数是-3,同时-3的相反数是+3
(2)零的相反数是零
(3)在数轴上,表示相反数(除零外)的两个点分别在原点O的两边,并且到原点的距离相等.
微信扫码关注公众号
获取更多考试热门资料