定义:两组对边分别平行的四边形叫做平行四边形。平行四边形属于平面图形,平行四边形属于四边形,平行四边形属于中心对称图形。平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。
在欧几里德几何中,平行四边形是具有两对平行边的简单四边形。平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
判定
1、两组对边分别平行的四边形是平行四边形。
2、一组对边平行且相等的四边形是平行四边形。
3、两组对边分别相等的四边形是平行四边形。
4、两组对角分别相等的四边形是平行四边形。
5、对角线互相平分的四边形是平行四边形。
补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
定义:两组对边分别平行的四边形叫做平行四边形,
特点:对边平行,对边相等,对角相等,对角线互相平分,
平行四边形的任何一边都可以做底,
从底上作任意一点,向对边作垂线,
这点与垂足之间的距离就是高。
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。
平行四边形一般用图形名称加四个顶点依次命名。在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。
平行四边形的性质:
(1)如果一个四边形是平行四边形,那么这个四边形的邻角互补。
(2)夹在两条平行线间的平行的高相等。
(3)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(4)平行四边形对角线把平行四边形面积分成四等份。
(5)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
参考资料来源:百度百科-平行四边形
平行四边形是在同一个二维平面内,由两组平行线段组成的闭合图形。既属于平面图形、四边形,又属于中心对称图形。平行四边的对边、对角分别相等,对角线互相平分,邻角互补。过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。平行四边形对角线把平行四边形面积分成四等份。
平行四边形的判定是:一组对边平行且相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
微信扫码关注公众号
获取更多考试热门资料