学分高考 教育综合

什么叫质数

发布时间: 2025-05-25 22:47
精选回答

质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。

什么叫质数

合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。

在整数中,不能被2整除的数叫做奇数;能被2整除的数叫做偶数,二的倍数叫做偶数。

什么叫质数

质数就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数或素数。还可以说成质数只有1和它本身两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?

1

质数的概念

所谓质数或称素数,就是一个正整数,除了本身和 1 以外并没有任何其他因子。例如 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数。从这个观点可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字 1 不该称为质数)著名的高斯「唯一分解定理」说,任何一个整数。可以写成一串质数相乘的积。

合数

合数又名合成数,是满足以下任一(等价)条件的正整数:

1是两个大于 1 的整数之乘积;

2拥有某大于 1 而小于自身的因数(因子);

3拥有至少三个因数(因子);

4不是 1 也不是素数(质数);

5有至少一个素因子的非素数。

以下是关于合数以及一些特殊合数的结论:

·一个合数有奇数个因数(因子)当且仅当它是完全平方数。

1、只有1和它本身两个约数的数,叫质数。(如:2÷1=2,2÷2=1,所以2的约数只有1和它本身2这两个约数,2就是质数。)

2、除了1和它本身两个约数外,还有其它约数的数,叫合数。(如:4÷1=4,4÷2=2,4÷4=1,很显然,4的约数除了1和它本身4这两个约数以外,还有约数2,所以4是合数。)

3、1既不是质数也不是合数。因为它的约数有且只有1这一个约数。

质数的概念是什么

质数

就是在所有比1大的

整数

中,除了1和它本身以外,不再有别的

约数

,这种整数叫做质数或素数。还可以说成质数只有1和它本身两个约数。这终规只是文字上的解释而已。能不能有一个

代数式

,规定用

字母

表示的那个数为规定的任何值时,所代入的

代数式的值

都是质数呢?

1

质数的概念

所谓质数或称素数,就是一个

正整数

,除了本身和

1

以外并没有任何其他

因子

。例如

2,3,5,7

是质数,而

4,6,8,9

则不是,后者称为合成数。从这个

观点

可将整数分为两种,一种叫质数,一种叫合成数。(有人认为数目字

1

不该称为质数)著名的高斯「唯一分解

定理

」说,任何一个整数。可以写成一串质数相乘的积。

质数的奥秘

质数的分布是没有

规律

的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(743)和901(1753)却是合数。

有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个

式子

一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=4141。

质数的性质

被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n)+1,则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4294967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4294967297=6416700417,并非质数,而是合数。

更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于

平方

开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其

位数

多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑!

质数的

假设

17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。

p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。

还剩下p=67、127、257三个

梅森数

,由于太大,长期

没有人

去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。

问题一:质数如何定义 质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。

简介

定义

在所有的非零自然数中,除1和自身外没有其他因数的数叫做质数。质数又叫做素数。 例如2,3,7,11等就是素数。

质数与合数

合数是由若干个质数相乘而得到的。所以,质数是合数的基础,没有质数就没有合数。这也说明了前面所提到的质数在数论中有着重要的地位。

质数与1

历史上,曾经将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外,而从高等代数的角度来看,1是乘法单位元,也不能算在质数之内,并且,所有的合数都可由若干个质数相乘而得到。

编辑本段求质数的公式

质数的分布

质数的分布是没有规律的,往往让人莫名其妙。例如 101、401、601、701都是质数,但与这些数类似的301(=7×43)和901(=17×53)却是合数。 质数库包容全部质数 如今有一个大问题是,能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?

n^2+n+41

有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是经过合情推理,人们就得出这样一个“公式”:设一正整数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,40^2+40+41=1681=41×41,它是一个合数。 质数的个数是否是无穷的呢?答案是肯定的。最经典的证明由欧几里得证明在他的《几何原本》中就有记载,虽然过去了2000多年,但是至今仍然闪烁着智慧的光辉!它使用了现在证明常用的方法:反证法。具体的证明如下:假设素数只有有限的n个,从小到大依次排列为p1,p2,…,pn,设 x = (p1・p2・・pn)+1,如果x是合数,那么它被从p1,p2,,pn中的任何一个素数整除都会余1,那么能够整除x的素数一定是大于的素数,和pn是最大的素数前提矛盾,而如果说x是素数,因为x>pn,仍然和pn是最大的素数前提矛盾。因此说如果素数是有限个,那么一定可以证明存在另一个更大素数在原来假设的素数范围之外,所以说素数的个数无限。

问题二:质数的概念是什么,又叫什么 质数是除了一和它本身之外,不能被其他数整除的正整数,又称素数

问题三:质数定义是什么 质数(prime number)又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数的数称为质数。

比如2,3,17等是质数。

问题四:质数的含义? 质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。

希供帮助到你,若有疑问,可以追问~~~

祝你学习进步,更上一层楼!(^__^)

问题五:什么叫质数 质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自场)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。

基本定理

算术基本定理: 任何大于1的正整数n可以唯一表示成有限个素数的乘积: n=p_1p_2p_s, 这里p_1≤p_2 ≤≤p_s是素数。 这一表达式也称为n的标准分解式。 算术基本定理是初等数论中最基本的定理。由此定理, 我们可以重新定义两个整数的最大公因子和最小公倍数等等概念。 1不能称作素数,是因为要确保算术基本定理所要求的唯一性成立。这一解释可参看华罗庚《数论导引》

基本特点

最小的素数是2, 他也是唯一的偶素数。 最前面的素数依次排列为:2,3,5,7,11,13,17, 不是质数且大于1的正整数称为合数。 质数表上的质数请见素数表。 依据定义得公式: 设A=n2+b=(n-x)(n+y),除n-x=1以外无正整数。故有: y=(b+nx)/(n-x) (x1993,那么我们只要用1993去除 问题六:质数是什么意思? 什么是质数?就是在所有比1大的整数中,除了1和它本身以外,不再有别的约数,这种整数叫做质数,质数又叫做素数。还可以说成质数有两个约数。这终规只是文字上的解释而已。能不能有一个代数式,规定用字母表示的那个数为规定的任何值时,所代入的代数式的值都是质数呢?

质数的分布是没有规律的,往往让人莫名其妙。如:101、401、601、701都是质数,但上下面的301(743)和901(1753)却是合数。

有人做过这样的验算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……于是就可以有这样一个公式:设一正数为n,则n^2+n+41的值一定是一个质数。这个式子一直到n=39时,都是成立的。但n=40时,其式子就不成立了,因为40^2+40+41=1681=4141。

被称为“17世纪最伟大的法国数学家”费尔马,也研究过质数的性质。他发现,设Fn=2^(2^n),则当n分别等于0、1、2、3、4时,Fn分别给出3、5、17、257、65537,都是质数,由于F5太大(F5=4292967297),他没有再往下检测就直接猜测:对于一切自然数,Fn都是质数。但是,就是在F5上出了问题!费尔马死后67年,25岁的瑞士数学家欧拉证明:F5=4292967297=6416700417,并非质数,而是合数。

更加有趣的是,以后的Fn值,数学家再也没有找到哪个Fn值是质数,全部都是合数。目前由于平方开得较大,因而能够证明的也很少。现在数学家们取得Fn的最大值为:n=1495。这可是个超级天文数字,其位数多达10^10584位,当然它尽管非常之大,但也不是个质数。质数和费尔马开了个大玩笑!

17世纪还有位法国数学家叫梅森,他曾经做过一个猜想:2^p-1代数式,当p是质数时,2^p-1是质数。他验算出了:当p=2、3、5、7、17、19时,所得代数式的值都是质数,后来,欧拉证明p=31时,2^p-1是质数。 p=2,3,5,7时,Mp都是素数,但M11=2047=23×89不是素数。

还剩下p=67、127、257三个梅森数,由于太大,长期没有人去验证。梅森去世250年后,美国数学家科勒证明,2^67-1=193707721761838257287,是一个合数。这是第九个梅森数。20世纪,人们先后证明:第10个梅森数是质数,第11个梅森数是合数。质数排列得这样杂乱无章,也给人们寻找质数规律造成了困难。

工现在,数学家找到的最大的梅森数是一个有9808357位的数:2^32582657-1。数学虽然可以找到很大的质数,但质数的规律还是无法循通。

以上就是关于什么是质数全部的内容,包括:什么是质数、什么叫做质数、什么叫质数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

温馨提示:
本答案【什么叫质数】由作者教培参考提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号