学分高考 精选问答

矩阵的转置矩阵怎么求

发布时间: 2025-07-28 02:07
精选回答

解: |A-λE|=

|2-λ 2 -2|

|2 5-λ -4|

|-2 -4 5-λ|

r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)

|2-λ 2 -2|

|2 5-λ -4|

|0 1-λ 1-λ|

c2-c3

|2-λ 4 -2|

|2 9-λ -4|

|0 0 1-λ|

= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)

= (1-λ)(λ^2-11λ+10)

= (10-λ)(1-λ)^2.

如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),而且该矩阵对应的特征值全部为实数,则称A为实对称矩阵。

主要性质:

1.实对称矩阵A的不同特征值对应的特征向量是正交的。

2.实对称矩阵A的特征值都是实数,特征向量都是实向量。

3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。

4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。

温馨提示:
本答案【矩阵的转置矩阵怎么求】由作者教育那些年提供。该文观点仅代表作者本人,学分高考系信息发布平台,仅提供信息存储空间服务,若存在侵权问题,请及时联系管理员或作者进行删除。
我们采用的作品包括内容和图片部分来源于网络用户投稿,我们不确定投稿用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的权利,请联系我站将及时删除。
内容侵权、违法和不良信息举报
Copyright @ 2024 学分高考 All Rights Reserved 版权所有. 湘ICP备17021685号